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MOMENT FUNCTIONS
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Dedicated to Professor Imre Kátai on the occasion of his 70th birthday

Abstract. This paper presents some recent results concerning functional

equations on Sturm–Liouville hypergroups. The general form of additive

functions, exponentials and moment functions on these types of hyper-

groups is given.

1. Introduction

The concept of DJS-hypergroup (according to the initials of C.F. Dunkl,
R.I. Jewett and R. Spector) can be introduced using different axiom systems.
The way of introducing the concept here is due to R. Lasser (see e.g. [2],
[6]). One begins with a locally compact Haussdorff space K, the space M(K)
of all finite complex regular measures on K, the space Mc(K) of all finitely
supported measures in M(K), the space M1(K) of all probability measures in
M(K), and the space M1

c(K) of all compactly supported probability measures
in M(K). The point mass concentrated at x is denoted by δx. Suppose that
we have the following:

(H∗) There is a continuous mapping (x, y) 7→ δx ∗ δy from K ×K into M1
c(K),

the latter being endowed with the weak*-topology with respect to the
space of compactly supported complex valued continuous functions on K.
This mapping is called convolution.
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(H∨) There is an involutive homeomorphism x 7→ x∨ from K to K. This
mapping is called involution.

(He) There is a fixed element e in K. This element is called identity.

Identifying x by δx the mapping in (H∗) has a unique extension to a
continuous bilinear mapping from M(K) ×M(K) to M(K). The involution
on K extends to an involution on M(K). Then a DJS-hypergroup, or simply
hypergroup, is a quadruple (K, ∗,∨, e) satisfying the following axioms: for any
x, y, z in K we have

(H1) δx ∗ (δy ∗ δz) = (δx ∗ δy) ∗ δz;
(H2) (δx ∗ δy)∨ = δy∨ ∗ δx∨ ;
(H3) δx ∗ δe = δe ∗ δx = δx;
(H4) e is in the support of δx ∗ δy∨ if and only if x = y;
(H5) the mapping (x, y) 7→ supp(δx ∗ δy) from K ×K into the space of nonvoid

compact subsets of K is continuous, the latter being endowed with the
Michael–topology (see [2]).

If δx ∗ δy = δy ∗ δx holds for all x, y in K, then we call the hypergroup
commutative. If x∨ = x holds for all x in K then we call the hypergroup
Hermitian. By (H2) any Hermitian hypergroup is commutative. For instance,
if K = G is a locally compact Haussdorff-group, δx ∗ δy = δxy for all x, y in
K, x∨ is the inverse of x, and e is the identity of G, then we obviously have
a hypergroup (K, ∗,∨, e), which is commutative if and only if the group G is
commutative. However, not every hypergroup originates in this way.

In any hypergroup K we identify x by δx and we define the right translation
operator Ty by the element y in K according to the formula

Tyf(x) =
∫

K

f d(δx ∗ δy),

for any f integrable with respect to δx ∗ δy. In particular, Ty is defined for
any continuous complex valued function on K. Similarly, we can define left
translation operators but at this moment we do not need any extra notation
for them.

Sometimes one uses the suggestive notation

f(x ∗ y) =
∫

K

f d(δx ∗ δy),
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for any x, y in K. However, we call the attention to the fact that actually
f(x ∗ y) has no meaning in itself, because x ∗ y is in general not an element of
K, hence f is not defined at x ∗ y.

If K is a discrete topological space, then we call the hypergroup a
discrete hypergroup. An important special class of discrete hypergroups are the
polynomial hypergroups which are closely related to orthogonal polynomials.
For the definition and a detailed study of polynomial hypergroups the reader
should refer to [2].

Another important class of hypergroups is the class of Sturm–Liouville
hypergroups. The definition and some basic properties of Sturm–Liouville
hypergroups will be given in the following section.

In our former paper [7] we presented some recent results concerning
functional equations on hypergroups. The aim was to give some idea for
the treatment of classical functional equation problems in the hypergroup
setting. We described the general form of additive functions, exponentials
and moment functions of second order on polynomial hypergroups. Here we
consider similar problems concerning classical functional equations on Sturm-
Liouville hypergroups.

2. Sturm-Liouville hypergroups

Sturm-Liouville hypergroups represent another important class of hyper-
groups, which arise from Sturm-Liouville boundary value problems on the
nonnegative reals. In order to build up the Sturm-Liouville operator basic to
the construction of hypergroups one introduces the Sturm-Liouville functions.
For further details see [2]. In what follows R0 denotes the set of nonnegative
real numbers.

The continuous function A : R0 → R is called a Sturm-Liouville function,
if it is positive and continuously differentiable on the positive reals. Different
assumptions on A can be found in [2] which lead to the desired Sturm-Liouville
problem. For a given Sturm-Liouville function A one defines the Sturm-
Liouville operator LA by

LAf = −f ′′ − A′

A
f ′,

where f is a twice continuously differentiable real function on the positive reals.
Using LA one introduces the differential operator l by

l[u](x, y) = (LA)xu(x, y)− (LA)yu(x, y) =
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= −∂2
1u(x, y)− A′(x)

A(x)
∂1u(x, y) + ∂2

2u(x, y) +
A′(y)
A(y)

∂2u(x, y),

where u is twice continuously differentiable for all positive reals x, y. Here
(LA)x and (LA)y indicates that LA operates on functions depending on x or
y, respectively.

A hypergroup on R0 is called a Sturm-Liouville hypergroup if there exists
a Sturm-Liouville function A such that given any real-valued C∞-function f
on R0 the function uf defined by

uf (x, y) =
∫

R0

f d(δx ∗ δy)

for all positive x, y is twice continuously differentiable and satisfies the partial
differential equation

l[uf ] = 0

with ∂2uf (x, 0) = 0 for all positive x. Hence uf is a solution of the Cauchy-
problem

∂2
1u(x, y) +

A′(x)
A(x)

∂1u(x, y) = ∂2
2u(x, y) +

A′(y)
A(y)

∂2u(x, y),

∂2u(x, 0) = 0

for all positive x, y. From general properties of one-dimensional hypergroups
given in [2] it follows that uf (y, 0) = uf (0, y) = f(y) and ∂1uf (0, y) = 0 hold,
whenever y is a positive real number. In other words, uf is the unique solution
of the boundary value problem

(1)

∂2
1u(x, y) +

A′(x)
A(x)

∂1u(x, y) = ∂2
2u(x, y) +

A′(y)
A(y)

∂2u(x, y),

∂1u(0, y) = 0, ∂2u(x, 0) = 0,

u(x, 0) = f(x), u(0, y) = f(y)

for all positive x, y. As this boundary value problem uniquely defines uf for any
f , we may consider it the boundary value problem defining the Sturm-Liouville
hypergroup.

If a Sturm-Liouville hypergroup structure is given on R0 by the Sturm-
Liouville function A, then we denote it by (R0, A). If the Strum-Liouville
function A satisfies

(2)
A′(x)
A(x)

=
α0

x
+ α1(x)
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for all x 6= 0 in a neighborhood of 0 with α0 > 0 such that α1 is an odd C∞-
function on R and the function A′

A is nonnegative and decreasing, further A is
increasing with lim

x→+∞
A(x) = +∞, then A is called a Chébli-Trimèche function

and the corresponding Sturm-Liouville hypergroup is called a Chébli-Trimèche
hypergroup. Special cases are represented by the Bessel-Kingman hypergroups
with A(0) = 0 and

A(x) = xα

for all positive x and some α > 0, and the hyperbolic hypergroups, where A(0) =
= 0 and

A(x) = sinha x

for all positive x and some a > 0.

If the Sturm-Liouville function A is twice continuously differentiable on
the positive reals and satisfies (2), where α0 = 0 and α1 is continuously
differentiable on the positive reals, then A is called a Levitan function and
the corresponding Sturm-Liouville hypergroup is called a Levitan hypergroup.
Special cases are represented by the cosh hypergroup, where

A(x) = cosh2 x

for all nonnegative x, and the square hypergroup, where

A(x) = (1 + x)2

for all nonnegative x (see [8]). For more about these hypergroups and their
applications see [2].

3. Exponentials, additive functions and moment functions on hyper-
groups

Let K be a hypergroup with convolution ∗, involution ∨, and identity e.
For any y in K let Ty denote the right translation operator on the space of all
complex valued functions on K which are integrable with respect to δx ∗ δy for
any x, y in K. In particular, any continuous complex valued function belongs
to this class.

The continuous complex valued function m on K is called an exponential,
if it is not identically zero, and

Tym(x) = m(x)m(y)
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holds for all x, y in K. In other words m satisfies the functional equation

m(x ∗ y) = m(x)m(y).

The continuous complex valued function a on K is called additive, if it
satisfies

Tya(x) = a(x) + a(y)

for all x, y in K. In other words this means that

a(x ∗ y) = a(x) + a(y)

holds for any x, y in K. It is obvious that any linear combination of additive
functions is additive again. However, in contrast to the case of groups, the
product of exponentials is not necessarily an exponential.

The third important class of functions we want to study in this work is the
class of moment functions. Moments of probability measures on a hypergroup
can be introduced in terms of moment functions. The notion of moment
functions has been formalized in [8] (see also [2]). For any nonnegative integer
N the complex valued function f on K is called a moment function of order N ,
if there are complex valued continuous functions fk on K for k = 0, 1, . . . , N
such that f0 = 1, fN = f , and

(3) fk(x ∗ y) =
k∑

j=0

(
k

j

)
fj(x)fk−j(y)

holds for k = 0, 1, . . . , N and for all x, y in K. In this case we say that the func-
tions fk (k = 0, 1, . . . , N) form a moment sequence of order N . Hence moment
functions of order 1 are exactly the additive functions. In [3] the general form
of moment functions of order N = 1 and N = 2 have been determined in the
case of polynomial hypergroups. We can generalize this concept by omitting
the hypothesis f0 = 1 but still f0 is nonidentically zero. In this case f0 is
an exponential function and we say that f0 generates the generalized moment
sequence of order N and fk is a generalized moment function of order k with
respect to f0 (k = 0, 1, . . . , N). For instance, generalized moment functions of
order 1 with respect to the exponential f0 are solutions of the sine functional
equation

f1(x ∗ y) = f0(x)f1(y) + f0(y)f1(x)

for any x, y in K.
The study of moment functions and moment sequences on hypergroups

leads to the study of the above system of functional equations. We remark that
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a similar system of functional equations on groupoids has been investigated and
solved in [1].

4. Exponentials and additive functions on Sturm-Liouville hyper-
groups

Let K = (R0, A) be a Sturm-Liouville hypergroup. Now we describe all
exponentials defined on K (see also [2]).

Theorem 4.1. Let K = (R0, A) be the Sturm-Liouville hypergroup
corresponding to the Sturm-Liouville function A. Then the continuous function
m : R0 → C is an exponential on K if and only if it is C∞ and there exists a
complex number λ such that

(4) m′′(x) +
A′(x)
A(x)

m′(x) = λm(x), m(0) = 1, m′(0) = 0

holds for any positive x.

Proof. First suppose that the function m : R0 → C is C∞ on R0 and it
satisfies the given boundary value problem. Then the function

m(x ∗ y) =

∞∫

0

m(t) d(δx ∗ δy)(t)

and also the function (x, y) → m(x)m(y) is a solution of the boundary value
problem defining the hypergroup, hence they are equal and m is an exponential.

Conversely, suppose that m : R0 → C is an exponential on the hypergroup
K. Then the function um(x, y) = m(x)m(y) is a solution of the boundary value
problem defining the hypergroup, hence we obtain

(
m′′(x) +

A′(x)
A(x)

m′(x)
)

m(y) =
(

m′′(y) +
A′(y)
A(y)

m′(y)
)

m(x)

holds for each positive x, y, and there exists a complex λ with

m′′(x) +
A′(x)
A(x)

m′(x) = λm(x)



148 Á. Orosz and L. Székelyhidi

for all positive x, consequently m is C∞ on R0. The relations m(0) = 1 and
m′(0) = 0 are immediate consequences of the fact that m is an exponential and
the neutral element of the hypergroup is zero.

Hence any exponential function on a Sturm-Liouville hypergroup is an
eigenfunction of the Sturm-Liouville operator corresponding to the given hy-
pergroup. Each complex number is an eigenvalue and there is a one-to-one
correspondence between complex numbers and exponentials. For any fixed
complex λ we shall denote by x 7→ ϕ(x, λ) the unique solution of the boundary
value problem (4). Then the function ϕ : R0 × C → C represents a one-
parameter family of exponentials of the Sturm–Liouville hypergroup K, which
is called the exponential family of K. For instance, the complex number λ = 0
corresponds to the eigenvalue problem

m′′(x) +
A′(x)
A(x)

m′(x) = 0, m(0) = 1, m′(0) = 0 ,

which obviously has the unique solution m ≡ 1, hence ϕ(x, 0) = 1 for each x
in R0.

5. Additive functions on Sturm-Liouville hypergroups

Again let K = (R0, A) be a Sturm-Liouville hypergroup. Now we describe
all additive functions defined on K (see also [2]).

Theorem 5.1. Let K = (R0, A) be the Sturm-Liouville hypergroup
corresponding to the Sturm-Liouville function A. Then the continuous function
a : R0 → C is an additive function on K if and only if it is C∞ and there exists
a complex number λ such that

(5) a′′(x) +
A′(x)
A(x)

a′(x) = λ, a(0) = 0, a′(0) = 0

holds for any positive x.

Proof. The proof is very similar to that of the previous theorem. First
suppose that the function a : R0 → C is C∞ and it satisfies the given boundary
value problem. Then the function

a(x ∗ y) =

∞∫

0

a(t) d(δx ∗ δy)(t)
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and also the function (x, y) → a(x) + a(y) is a solution of the boundary value
problem defining the hypergroup, hence they are equal and a is an additive
function.

Conversely, suppose that a : R0 → C is an additive function on the given
hypergroup K. Then the function ua(x, y) = a(x) + a(y) is a solution of the
boundary value problem defining the hypergroup, hence we obtain

a′′(x) +
A′(x)
A(x)

a′(x) = a′′(y) +
A′(y)
A(y)

a′(y)

holds for each positive x, y, and there exists a complex λ with

a′′(x) +
A′(x)
A(x)

a′(x) = λ

for all positive x, consequently a is C∞ on R0. The relations a(0) = 0 and
a′(0) = 0 are immediate consequences of the fact that a is additive and the
neutral element of the hypergroup is zero.

It is obvious that the unique solution aλ of the boundary value problem
(5) is λ a1, where a1 is the unique solution of (5) with λ = 1. This means that
all additive functions of a Sturm-Liouville hypergroup are constant multiples of
a fixed nonzero additive function. We call a1 the generating additive function
of the Sturm-Liouville hypergroup (R0, A).

It turns out that the boundary value problem (5) can be solved explicitly.
Namely, we have the following theorem (see [8]).

Theorem 5.2. Let K = (R0, A) be the Sturm-Liouville hypergroup
corresponding to the Sturm-Liouville function A. Then the generating additive
function of the hypergroup K is given by

(6) a1(x) =

x∫

0

y∫

0

A(t)
A(y)

dt dy

for each nonnegative x. Hence any additive function of the hypergroup K is
given by

(7) aλ(x) = λ

x∫

0

y∫

0

A(t)
A(y)

dt dy

for each nonnegative x.
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Proof. The proof is obvious using standard methods from the theory of
linear differential equations. Another way of proving the statement is direct
verification and using the uniqueness theorem.

As an illustration we compute the additive functions on the Bessel-
Kingman hypergroup, which is a special Chébli-Trimèche hypergroup. Here
A(x) = xα for all nonnegative x with some positive number α. In this case we
have

a1(x) =

x∫

0

y∫

0

tα

yα
dt dy =

x2

2(α + 1)

and

aλ(x) = λ

x∫

0

y∫

0

tα

yα
dt dy =

λx2

2(α + 1)

for each nonnegative x and complex number λ.

Another example is given here for a special Levitan hypergroup, the square
hypergroup, where A(x) = (1 + x)2 for all nonnegative x. From the above
formulas we have

a1(x) =

x∫

0

y∫

0

(1 + t)2

(1 + y)2
dt dy =

x3 + 3x2

6(x + 1)

and

aλ(x) = λ

x∫

0

y∫

0

(1 + t)2

(1 + y)2
dt dy =

λ(x3 + 3x2)
6(x + 1)

for each nonnegative x and complex number λ.

6. Moment functions on Sturm-Liouville hypergroups

Let K = (R0, A) be a Sturm-Liouville hypergroup. In this section we
describe all generalized moment functions defined on K. We remark that in
[4] and [5] the general form of generalized moment functions on polynomial
hypergroups is given.

Theorem 6.1. Let K = (R0, A) be the Sturm-Liouville hypergroup
corresponding to the Sturm-Liouville function A and let N be a positive integer.
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The continuous functions fk : R0 → C (k = 0, 1, . . . , N) form a sequence of
generalized moment functions on the hypergroup K if and only if they are C∞

and there are complex numbers ck for k = 0, 1, . . . , N such that

(8) f ′′0 (x) +
A′(x)
A(x)

f ′0(x) = c0 f0(x), f0(0) = 1, f ′0(0) = 0

and

(9) f ′′k (x) +
A′(x)
A(x)

f ′k(x) =
k∑

j=0

(
k

j

)
cj fk−j(x), fk(0) = 0, f ′k(0) = 0

holds for each positive x and for k = 1, 2, . . . , N .

Proof. First we proof the sufficiency. If the functions fk : R0 → C
(k = 0, 1, . . . , N) satisfy the conditions (8) and (9), then f0 is an exponential
function and hence f0(x ∗ y) = f0(x)f0(y) holds for all nonnegative numbers
x and y. We show that equation (3) holds for all k = 1, . . . N , namely, the
function

h(x, y) =
k∑

j=0

(
k

j

)
fj(x)fk−j(y)

is a solution of the differential equation in (1). Indeed, the differential equation
in (1) is equivalent to

k∑

j=0

(
k

j

)
f ′′j (x)fk−j(y) +

A′(x)
A(x)

k∑

j=0

(
k

j

)
f ′j(x)fk−j(y) =

=
k∑

j=0

(
k

j

)
fj(x)f ′′k−j(y) +

A′(y)
A(y)

k∑

j=0

(
k

j

)
fj(x)f ′k−j(y),

which is equivalent to

k∑

j=0

(
k

j

) (
f ′′j (x) +

A′(x)
A(x)

f ′j(x)
)

fk−j(y) =

=
k∑

j=0

(
k

j

)(
f ′′k−j(y) +

A′(y)
A(y)

f ′k−j(y)
)

fj(x),
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that is, to

k∑

j=0

(
k

j

) (
j∑

t=0

(
j

t

)
ctfj−t(x)

)
fk−j(y) =

=
k∑

j=0

(
k

j

) (
k−j∑
s=0

(
k − j

s

)
csfk−j−s(y)

)
fj(x).

But this equation holds true, since by choosing l = j + s, the right hand side
is equal to

k∑

l=0

l∑
s=0

(
k

l − s

)(
k − (l − s)

s

)
csfk−l(y)fl−s(x) ,

which is obviously equal to the left hand side. Moreover, the boundary value
conditions in (1) are also satisfied, as

∂1h(0, y) =
k∑

j=0

f ′j(0)fk−j(y) = 0 ,

and

h(0, y) =
k∑

j=0

fj(0)fk−j(y) = fk(y) ,

and similarly ∂2h(x, 0) = 0, and h(x, 0) = fk(x), hence h is the unique solution
of the boundary value problem, which implies that h(x, y) = f(x ∗ y).

Conversely, suppose that the continuous functions fk : R0 → C (k =
= 0, 1, . . . , N) form a generalized moment sequence of order N . Then, by
definition, f0 is an exponential and the conditions of (8) are satisfied. Now we
proceed by induction and assume that (9) holds for f0, f1, . . . , fk, with some
positive integer k < N . We have

(10) fk+1(x ∗ y) =
k+1∑

j=0

(
k + 1

j

)
fj(x)fk+1−j(y) ,

and by the definition of the hypergroup this implies that

k+1∑

j=0

(
k + 1

j

)
f ′′j (x)fk+1−j(y) +

A′(x)
A(x)

k+1∑

j=0

(
k + 1

j

)
f ′j(x)fk+1−j(y) =

=
k+1∑

j=0

(
k + 1

j

)
fj(x)f ′′k+1−j(y) +

A′(y)
A(y)

k+1∑

j=0

(
k + 1

j

)
fj(x)f ′k+1−j(y) .
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Rearranging the terms and using the induction hypothesis we have
(

f ′′k+1(x) +
A′(x)
A(x)

f ′k+1(x)
)

f0(y)+

+
k∑

j=0

(
k + 1

j

) (
j∑

t=0

(
j

t

)
ctfj−t(x)

)
fk+1−j(y) =

=
(

f ′′k+1(y) +
A′(y)
A(y)

f ′k+1(y)
)

f0(x)+

+
k+1∑

j=1

(
k + 1

j

) (
k+1−j∑

t=0

(
k + 1− j

t

)
ctfk+1−j−t(y)

)
fj(x) ,

therefore

(
f ′′k+1(x) +

A′(x)
A(x)

f ′k+1(x)
)

f0(y) +
k∑

j=0

k + 1
j

cjf0(x)fk+1−j(y)+

+
k∑

j=1

(
k + 1

j

) (
j−1∑
t=0

(
j

t

)
ctfj−t(x)

)
fk+1−j(y) =

=
(

f ′′k+1(y) +
A′(y)
A(y)

f ′k+1(y)
)

f0(x) +
k+1∑

j=1

(
k + 1

j

)
ck+1−jf0(y)fj(x)+

+
k∑

j=1

(
k + 1

j

) (
k−j∑
t=0

(
k + 1− j

t

)
ctfk+1−j−t(y)

)
fj(x) .

It is easy to see, that the last terms on the two sides are equal:

k∑

j=1

(
k + 1

j

) (
j−1∑
t=0

(
j

t

)
ctfj−t(x)

)
fk+1−j(y) =

=
k−1∑
t=0

k−t∑
s=1

(
k + 1

s

)(
k + 1− s

t

)
ctfk+1−s−t(x)fs(y) =

=
k−1∑
t=0

k−t∑
s=1

(
k + 1
s + t

)(
s + t

t

)
ctfs(y)fk+1−s−t(x) =

=
k∑

j=1

(
k + 1

j

) (
k−j∑
t=0

(
k + 1− j

t

)
ctfk+1−j−t(y)

)
fj(x) .
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This means that

f ′′k+1(x) +

A′(x)
A(x)

f ′k+1(x)−
k+1∑

j=1

(
k + 1

j

)
ck+1−jfj(x)


 f0(y) =

=


f ′′k+1(y) +

A′(y)
A(y)

f ′k+1(y)−
k∑

j=0

(
k + 1

j

)
cjfk+1−j(y)


 f0(x)

holds for each positive x and y, hence there exists a complex number ck+1 such
that

f ′′k+1(x) +
A′(x)
A(x)

f ′k+1(x)−
k+1∑

j=1

(
k + 1

j

)
ck+1−jfj(x) = ck+1f0(x) .

As a consequence of (10) we also have fk+1(0) = 0, and due to

0 =
k+1∑

j=0

(
k + 1

j

)
fj(x)f ′k+1−j(0) = f0(x)f ′k+1(0)

we get that f ′k+1(0) = 0. Hence (9) holds for k + 1 and the theorem is proved
by induction.

Theorem 6.2. Let K = (R0, A) be the Sturm-Liouville hypergroup
corresponding to the Sturm-Liouville function A with the exponential family
ϕ and let N be a positive integer. The continuous functions fk : R0 → C
(k = 0, 1, . . . , N) form a sequence of generalized moment functions of order N
on the hypergroup K if and only if there are complex numbers c0, c1, . . . , cN

such that

(13) fk(x) = ∂k
t ϕ

(
x, f(t)

)∣∣
t=0

holds for each x in R0, where ϕ is the exponential family of the Sturm-Liouville
hypergroup K and

f(t) =
N∑

j=0

cj
tj

j!

for each t in R.

Proof. Let k be in {0, 1 . . . , N}, let ϕ be the exponential family of the
hypergroup K, and let f be the function given in the theorem. If we take
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λ = f(t) in (4) and differentiate the equation k-times with respect to t we get
that

(14) ∂2
x∂k

t ϕ
(
x, f(t)

)
+

A′(x)
A(x)

∂x∂k
t ϕ

(
x, f(t)

)
=

k∑

j=0

(
k

j

)
f (j)(t)∂k−j

t ϕ
(
x, f(t)

)
.

Taking t = 0 we have for fk(x) = ∂k
t ϕ

(
x, f(t)

)∣∣
t=0

the following equation

f ′′k (x) +
A′(x)
A(x)

f ′k(x) =
k∑

j=0

(
k

j

)
cj fk−j(x) ,

furthermore f0(0) = 1, f ′0(0) = 0, and fk(0) = 0, f ′k(0) = 0 in case of
k 6= 0. This means that all the conditions of Theorem 6.1 are satisfied and
f0, f1, . . . , fN form a generalized moment sequence.

To prove the converse we assume that the functions f0, f1, . . . , fN form a
generalized moment sequence and we prove by induction. It is obvious that
the statement is true for f0 and we suppose that fj(x) = ∂j

t ϕ
(
x, f(t)

)∣∣
t=0

for
j = 0, 1, . . . , k, where k is in {1, 2, . . . , N}. We consider the function

g(x) = fk+1(x)− ∂k+1
t ϕ

(
x, f(t)

)∣∣
t=0

for each positive x. Then the expression g′′(x) + A′(x)
A(x) g′(x) is equal to

f ′′k+1(x) +
A′(x)
A(x)

f ′k+1(x)− ∂2
x∂k+1

t ϕ(x, f(t))
∣∣
t=0

− A′(x)
A(x)

∂x∂k+1
t ϕ

(
x, f(t)

)∣∣
t=0

and using Theorem 6.1 and (14) we get

c0fk+1(x) +
k+1∑

j=1

(
k + 1

j

)
cj∂

k+1−j
t ϕ

(
x, f(t)

)∣∣
t=0
−

−
k+1∑

j=0

(
k + 1

j

)
cj∂

k+1−j
t ϕ

(
x, f(t)

)|t=0 = c0 g(x) .

Consequently

g′′(x) +
A′(x)
A(x)

g′(x) = c0 g(x) , g(0) = 0, g′(0) = 0 ,
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hence g(x) ≡ 0 and the proof is complete.
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1998, 13-31.
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